Question

Investigate the nature of critical points for the given functions:
a) f(x,y)=x^3-3x^2+y^2
b) f(x,y)=x^2+xy+y^2+1/x+1/y

Solution

==================================================================================================

a) f(x,y)=x^3-3x^2+y^2

Step-1: Find critical points:

    \begin{align*}     \left\ \frac{\partial f}{\partial x} = 3x^2-6x \end{align*}

    \begin{align*}      \left\ \frac{\partial f}{\partial y} = 2y \end{align*}

    \begin{align*}     \left \frac{\partial f}{\partial x} = 0 \ \Rightarrow 3x^2-6x=0 \ \Rightarrow x=2 \end{align*}

    \begin{align*}     \left \frac{\partial f}{\partial y} = 0 \ \Rightarrow 2y=0 \ \Rightarrow y=0 \end{align*}

Thus, (2, 0) is the critical point for f(x, y).

Step-2: Find Eigenvalues at critical point:

Hessian matrix of f,

    \[ Hf(x,y) = \begin{vmatrix} \frac{\partial^2 f}{\partial x^2} & \frac{\partial^2 f}{\partial x \partial y} \\ \frac{\partial^2 f}{\partial x \partial y} & \frac{\partial^2 f}{\partial y^2} \end{vmatrix} = \begin{vmatrix} 6x-6 & 0\\ 0 & 2 \end{vmatrix} \]

    \[ Hf(2,0) = \begin{bmatrix} -6 & 0\\ 0 & 2 \end{bmatrix} \]

\mid Hf(2,0) - \lambda I \mid = 0 \Rightarrow \mid Hf(2,0) - \lambda I \mid = 0 \Rightarrow

\lambda^2 + 4λ + 12=0 \Rightarrow \lambda = 6, 2

Step-3: Find nature of the critical point:

Since eigenvalues of Hf(2,0) are positive, (2, 0) is a local minimum.
==================================================================================================

b) f(x,y)=x^2+xy+y^2+1/x+1/y

Step-1: Find critical points:

(1)   \begin{equation*}     \left\ \frac{\partial f}{\partial x} = 2x+y-1/x^2 \end{equation*}

(2)   \begin{equation*}     \left\ \frac{\partial f}{\partial y} = 2y+x-1/y^2 \end{equation*}

(3)   \begin{equation*}     \left\ \frac{\partial f}{\partial x} = 0 \Rightarrow 2x+y-1/x^2=0 \Rightarrow 2x^3+x^2y=1 \end{equation*}

(4)   \begin{equation*}     \left\ x^2(2x+y)=1 \Rightarrow x^2=1/(2x+y) \end{equation*}

Similarly,

(5)   \begin{equation*}     \left\ \frac{\partial f}{\partial y} = 0 \Rightarrow 2y^3+y^2x=1 \end{equation*}

(6)   \begin{equation*}     \left\ \Rightarrow y^2=1/(2y+x) \end{equation*}

(3) = (5) = 1 \Rightarrow (4) = (5) \Rightarrow

(7)   \begin{equation*}     \left\ x^2=y^2 \Rightarrow x=y \end{equation*}

(7) in (1) \Rightarrow

    \begin{align*}     \left 2x+x-1/x^2=0 \Rightarrow 2x^3+x^3−1=0 \end{align*}

    \begin{align*}     \left \Rightarrow 3x^3=1 \Rightarrow x=1/3^{1/3}  \end{align*}

From (7), we get y=1/3^{1/3}

Thus, (1/3^{1/3},1/3^{1/3}) is the critical point for f(x, y).

Step-2: Find Eigenvalues at critical point:

Hessian matrix of f, Hf(x,y)=∣∣∣∂2f/∂x2∂2f/∂x∂y∂2f/∂x∂y∂2f/∂y2∣∣∣ = ∣∣∣x+3/x311y+3/y3∣∣∣

    \[ Hf(x,y) = \begin{vmatrix} \frac{\partial^2 f}{\partial x^2} & \frac{\partial^2 f}{\partial x \partial y} \\ \frac{\partial^2 f}{\partial x \partial y} & \frac{\partial^2 f}{\partial y^2} \end{vmatrix} = \begin{vmatrix} x+3/x^3 & 1\\ 1 & y+3/y^3 \end{vmatrix} \]

    \[ Hf(3^{−1/3},3^{−1/3}) = \begin{bmatrix} 3^{−1/3}+9 & 1\\ 1 & 3^{−1/3}+9 \end{bmatrix} \]

    \[ \mid Hf(3^{−1/3},3^{−1/3}) - \lambda I \mid = 0 \]

\Rightarrow \lambda^2 - 19.39 \lambda + 92.96 = 0
\Rightarrow \lambda = 10.7,8.7

Step-3: Find nature of the critical point:

Since eigenvalues of Hf(3^{−1/3},3^{−1/3}) are positive, (3^{−1/3},3^{−1/3}) is a local minimum.

Subscribe to Ehan Ghalib!

Invalid email address
We promise not to spam you. You can unsubscribe at any time.

Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes:

<a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>