Question

Let P be a real square matrix satisfying P = P^T and P^2 = P.
i) Can the matrix P have complex eigenvalues? If so, construct an example, else, justify your answer.
ii) What are the eigenvalues of P?

Solution

Part-1: Conceptualize the Matrix P

P=P^T implies that P is a Symmetric Matrix. This means that except the diagonal elements, all other elements of the matrix are like a_{ij}=a_{ji}.

Thus,

    \[ P = \begin{bmatrix} a & c \\ c & b \end{bmatrix} \]

Let’s consider this sample. Assuming that whatever non-size related property that holds true for this 2 x 2 matrix should hold true for an n x n matrix as well.

Part-2: Construct the Matrix P

We know that, P^2=P

Thus,

    \[ P = \begin{bmatrix} a & c \\ c & b \end{bmatrix}.\begin{bmatrix} a & c \\ c & b \end{bmatrix} = \begin{bmatrix} a & c \\ c & b \end{bmatrix} \]

    \[ \Rightarrow \begin{bmatrix} (a^2 + c^2) & c.(a + b) \\ c.(a + b) & (b^2 + c^2) \end{bmatrix} = \begin{bmatrix} a & c \\ c & b \end{bmatrix} \]

(1)   \begin{equation*}     \left\ a^2 + c^2 = a \end{equation*}

(2)   \begin{equation*}     \left\ b^2 + c^2 = b \end{equation*}

(3)   \begin{equation*}     \left\ c.(a + b) = c \end{equation*}

(4)   \begin{equation*}     \left\ (1) \ and \ (2) \ holds \ if \ a=b=1 \end{equation*}

(4) & (3) \Rightarrow c=0

Thus, matrix P is an Identity matrix.

    \[ P = I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \]

Part-3: Find Eigenvalues of P

    \begin{align*}     \left Px = \lambda x \Rightarrow (P - \lambda I)x=0  \end{align*}

    \begin{align*}     \left P - \lambda I = 0 \Rightarrow I - \lambda I=0 \Rightarrow I(1 - \lambda)=0  \end{align*}

Thus, Eigenvalue of P is λ=1

Part-4: Can the matrix P have complex eigenvalues?

From Part 3, we see that P cannot have complex values as eigenvalues.

Subscribe to Ehan Ghalib!

Invalid email address
We promise not to spam you. You can unsubscribe at any time.

Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes:

<a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>