Question

Consider the below page linkage diagram among web pages A, B, C and D. As per page rank algorithm, what is the expected ranking among pages. Comment on the results.
page_linkage_diagram

Solution

==================================================================================================
PageRank of a page A is given by,

    \begin{align*} \left\ PR(A) = (1-d) + d[\frac{PR(T1)}{C(T1)} + .... + \frac{PR(Tn)}{C(Tn)}] \end{align*}

  • Let d = 0.85 and initial guess be: PR(A) = PR(B) = PR(C) = PR(D) = 0.
  • C(B) is the number of outgoing links from page B.
  • There are no outgoing edges from D. This means that D is a sink.
  • In order to handle this, let’s add edges to every page in the diagram from the sink (D).

The updated linkage diagram is as below:
page_linkage_diagram_sink

\Huge Iteration-1

    \begin{align*} \left\ PR(A) = (1-0.85) + 0.85*[\frac{PR(C)}{C(C)} + \frac{PR(D)}{C(D)}] \left\ = 0.15 + 0.85*[\frac{0}{2} + \frac{0}{3}] = 0.15 \end{align*}

    \begin{align*} \left\ PR(B) = 0.15 + 0.85*[\frac{PR(A)}{C(A)} + \frac{PR(D)}{C(D)}] \left\ = 0.15 + 0.85*[\frac{0.15}{1} + \frac{0}{3}] = 0.28 \end{align*}

    \begin{align*} \left\ PR(C) = 0.15 + 0.85*[\frac{PR(B)}{C(B)} + \frac{PR(D)}{C(D)}] \left\ = 0.15 + 0.85*[\frac{0.28}{1} + \frac{0}{3}] = 0.39 \end{align*}

    \begin{align*} \left\ PR(D) = 0.15 + 0.85*[\frac{PR(C)}{C(C)}] \left\ = 0.15 + 0.85*[\frac{0.39}{2}] = 0.32 \end{align*}

\Huge Iteration-2

    \begin{align*} \left\ PR(A) = 0.15 + 0.85*[\frac{0.39}{2} + \frac{0.32}{3}] = 0.41 \end{align*}

    \begin{align*} \left\ PR(B) = 0.15 + 0.85*[\frac{0.41}{1} + \frac{0.32}{3}] = 0.59 \end{align*}

    \begin{align*} \left\ PR(C) = 0.15 + 0.85*[\frac{0.59}{1} + \frac{0.32}{3}] = 0.75 \end{align*}

    \begin{align*} \left\ PR(D) = 0.15 + 0.85*[\frac{0.75}{2}] = 0.47 \end{align*}

\Huge Iteration-3

    \begin{align*} \left\ PR(A) = 0.15 + 0.85*[\frac{0.75}{2} + \frac{0.47}{3}] = 0.61 \end{align*}

    \begin{align*} \left\ PR(B) = 0.15 + 0.85*[\frac{0.61}{1} + \frac{0.47}{3}] = 0.80 \end{align*}

    \begin{align*} \left\ PR(C) = 0.15 + 0.85*[\frac{0.80}{1} + \frac{0.47}{3}] = 0.96 \end{align*}

    \begin{align*} \left\ PR(D) = 0.15 + 0.85*[\frac{0.96}{2}] = 0.56 \end{align*}

As expected, the sink has the lowest rank. We can also see that the average page rank is converging to 1.

Subscribe to Ehan Ghalib!

Invalid email address
We promise not to spam you. You can unsubscribe at any time.

Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes:

<a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>