Question

Let γ be the real root of a polynomial equation of degree 9 with integer coefficients. Construct the matrix

    \[ \left A = \right \left (\begin{array}{rrr} 2 & \gamma & 0 \\ \gamma & 2 & \gamma \\ 0 & \gamma & 2 \end{array} \right) \]

With this information, is it possible to
i) derive all the possible values of γ so that A has all non-zero eigenvalues?
ii) calculate the necessary condition on γ so that all the eigenvalues of A are positive?

Solution

    \[ \left A = \right \left (\begin{array}{rrr} 2 & \gamma & 0 \\ \gamma & 2 & \gamma \\ 0 & \gamma & 2 \end{array} \right) \]

This means that A is a real, symmetric matrix.

i) Let’s find the eigenvalues of |A - \lambda I| = 0

    \[ \left |A - \lambda I| = \right \left| \begin{array}{rrr} 2-\lambda & \gamma & 0 \\ \gamma & 2-\lambda & \gamma \\ 0 & \gamma & 2-\lambda \end{array} \right| \]

    \begin{align*} \left = (2-\lambda).[(2-\lambda)^2 - \gamma^2] - \gamma.[\gamma.(2-\lambda)] \end{align*}

    \begin{align*} \left = (2-\lambda)^3 - \gamma^2(2-\lambda) - \gamma^2(2-\lambda) = 0 \end{align*}

    \begin{align*} \left = (2-\lambda)^2 - 2\gamma^2 = 0 \end{align*}

    \begin{align*} \left (2-\lambda)^2 = 2\gamma^2 = 0 \end{align*}

    \begin{align*} \left (2-\lambda) = 2\gamma^2 = 0 \end{align*}

(1)   \begin{equation*} \left \lambda = 2 - \sqrt2\gamma \end{equation*}

For (1) to yield positive values:

    \begin{align*} \left 2 - \sqrt2\gamma > 0 \end{align*}

    \begin{align*} \left 2 > \sqrt2\gamma \end{align*}

    \begin{align*} \left \gamma < \sqrt2 \end{align*}

Thus, necessary condition is \gamma < \sqrt2 when γ is positive. But if \gamma is negative, then it can be any value \gamma \in \mathbb{R}.

Subscribe to Ehan Ghalib!

Invalid email address
We promise not to spam you. You can unsubscribe at any time.

Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes:

<a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>